
Did you Mean this Object?:
Detecting Ambiguity in Pointing Gesture Targets

Akansel Cosgun,∗Alexander J. B. Trevor and Henrik I. Christensen
Georgia Institute of Technology

Institute for Robotics and Intelligent Machines (IRIM)
{acosgun,atrevor,hic}@cc.gatech.edu

ABSTRACT
Pointing gestures are often used to refer to objects, places and peo-
ple. Robot perception systems that are able to correctly interpret
pointing gestures can benefit human-robot interaction. When there
are several potential pointing targets in the scene, such as multiple
objects, the intended target may be ambiguous. Robots that are able
to detect such ambiguities can act more intelligently by requesting
clarification from a user. In this work, we model the uncertainty of
pointing gestures in a spherical coordinate system, use this model
to determine the correct pointing target, and detect when there is
ambiguity. Two pointing methods are evaluated using two skeleton
tracking algorithms: elbow-hand and head-hand rays, using both
OpenNI NITE and Microsoft Kinect SDK. Our evaluation shows
that our model can be used to detect when there is an ambiguous
pointing target, and when it is clearly determined which object was
referenced.

Keywords
Pointing Gestures; Domestic robots; Joint Attention

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Understanding;
I.4.8 [Image Processing and Computer Vision]: Scene Analysis

1. INTRODUCTION
Humans and robots engaged in joint actions that involve objects

will need to be able to communicate about these objects. Deic-
tic gestures can play a crucial part such communication, especially
when establishing goals and negotiating responsibilities. In previ-
ous work, we developed an approach for recognizing human deic-
tic gestures in RGB-D sensors for annotating object models [27]
and 3D maps [28], to establish common ground, and enable these
labels to be referenced in tasks. In this work, we analyze the per-
formance of our deictic gesture recognition, and present an uncer-
tainty model that enables us to reason about ambiguity in point-

∗A. Cosgun and A. J. B. Trevor contributed equally to this work.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
HRI’15 Towards a Framework for Joint Action Workshop, Mar 02, 2015,
Portland, OR, USA

Figure 1: (Left) Our approach allows a robot to detect when
there is ambiguity on the pointing gesture targets. (Right) The
point cloud view from robot’s perspective is shown. Both ob-
jects are identified as potential intended targets, therefore the
robot decides that there is ambiguity.

ing gestures, when objects are too close to one another to deter-
mine the referent.We model the uncertainty of pointing gestures
in a spherical coordinate system, use this model to determine the
correct pointing target, and detect when there is ambiguity. Two
pointing methods are evaluated using two skeleton tracking algo-
rithms: elbow-hand and head-hand rays, using both OpenNI NITE
and Microsoft Kinect SDK [26]. A data collection with 6 users and
7 pointing targets was performed, and the data was used to model
users pointing behavior. The resulting model was evaluated for its
ability to distinguish between potential pointing targets, and to de-
tect when the target is ambiguous. An example scenario is shown
in Figure 1.

After a brief survey of the literature in Section 2, our gesture
recognition approach is outlined in Section 3. We then present our
spherical coordinate model in Section 4 and how intended targets
are determined in Section 5. Our data collection process is de-
scribed in Section 6 and the results of the error analysis is reported
in Section 7. We evaluate our model for two potentially ambiguous
pointing targets in Section 8, before concluding in Section 9.

2. RELATED WORK
Pointing gestures are widely used in Human-Robot Interaction

applications. Examples include interpretation of spoken requests [31],
pick and place tasks [3], joint attention [8], referring to places [10]
and objects [25], instructing [19] and providing navigation goals [24]
to a robot.

Early works on recognizing pointing gestures in stereo vision
utilized background subtraction [6, 13, 14]. Other popular meth-

ods include body silhouettes [15], hand poses [12], motion analy-
sis [20] and Hidden Markov Models [30, 2, 18, 22, 7, 1]. Matuszek
et. al presented a method for detecting deictic gestures given a set
of detected tabletop objects, by first segmenting the users hands
and computing the most distal point form the user, then applying
a Hierarchical Matching Pursuit (HMP) approach on these points
over time [21].

After deciding if a pointing gesture occurred or not, an algo-
rithm must estimate the direction of pointing. This is typically done
by extending a ray from one body part to another. Several body
part pairs are used in the literature, such as eye-fingertip [15] and
shoulder-hand [11]; with the two of most commonly used methods
being elbow-hand [24, 4, 3] and head-hand [2, 25] rays. Some stud-
ies found that head-hand approach is a more accurate way for es-
timating pointing direction than elbow-hand [23, 8]. Recent works
made use of skeleton tracking data from in depth images [23, 3, 24].
Other approaches, such as measuring head orientation with a mag-
netic sensor [22] and pointing with a laser pointer [5, 16] is reported
to have a better estimation accuracy than the body parts method,
but require additional hardware. We prefer not to use additional
devices in order to the interaction as natural as possible.

Given a pointing direction, several methods have been proposed
to determine which target or object is referred by the gesture, in-
cluding euclidean distance on a planar surface [5], ray-to-cluster
intersection in point clouds [3, 23] and searching a region in inter-
est around the intersection point [25]. Droeschel [7] trains a func-
tion using head-hand, elbow-hand and shoulder-hand features with
Gaussian Process Regression and reports a significant improvement
on pointing accuracy. Some efforts fuse speech with pointing ges-
tures for multi-modal Human-Robot Interaction [1, 17]. Aly [1] fo-
cuses on relation between non-verbal arm gestures and para-verbal
communication based on a HMM approach.

To our knowledge, only Zukerman [32] and Kowadlo [17] con-
sidered a probabilistic model for determining the referred object
for a pointing gesture. The probability that the user intended an
object is calculated using the 2D distance to the object and the oc-
clusion factor. Objects that reside in a Gaussian cone emanating
from the user’s hand are considered as candidates in the model.
The approach is implemented in [32], where it is reported that due
to high variance of the gesture recognition system, the Gaussian
cone typically encompassed about five objects in cluttered settings.
Our work addresses the confusion in such settings. In contrast to
their work, we use a 3D elliptical Gaussian cone where its shape is
extracted using a prior error analysis, and use point cloud data to
account for the size of the objects.

3. POINTING GESTURE RECOGNITION
Our approach to pointing gesture recognition is to use a skeleton

tracking algorithm as implemented by OpenNI NITE 1.5 (OpenNI)
or Microsoft Kinect SDK 1.5 (MS-SDK). Skeleton tracking soft-
ware produces 3D positions for several important points on the
user’s body, including hands, elbows, shoulders and head. Our
points of interests are user’s hands, elbows, and head for the recog-
nition of pointing gestures.

3.1 Types of Pointing Gestures
We are primarily interested in deictic gestures generated by point-

ing with one’s arm. We consider two rays for determining the
pointing direction: elbow-hand and head-hand. Both of these meth-
ods were evaluated with the two skeleton tracking implementations.
For each depth frame, this yields two rays for each of the OpenNI
and MS-SDK trackers:

• ~veh := ~pelbowphand
• ~vhh := ~pheadphand

3.2 Pointing Gesture Recognition
In previous work [28], we described a pointing gesture recogni-

tion method, summarized here. When a pointing gesture recogni-
tion request is received from a higher level process, the gesture is
searched in a time window of T seconds. Two conditions must be
met to trigger a pointing gesture:

• Forearm makes an angle more than φg with the vertical axis
• Elbow and hand points stays near-constant for duration ∆tg

The first condition requires the arm of the person to be extended,
while the second ensures that the gesture is consistent for some time
period. The parameters are empirically determined as: T = 30s,
φg = 45◦ and ∆tg = 0.5s.

4. REPRESENTING POINTING DIRECTIONS
We represent a pointing ray in two angles: a “horizontal” / “az-

imuth” sense we denote as θ and a “vertical” / “altitude” sense we
denote as ψ. We first attach a coordinate frame to the hand point,
with its z-axis oriented in either Elbow-hand ~veh or Head-Hand
~vhh directions. The hand was chosen as the origin for this coor-
dinate system because both of head-hand and elbow-hand pointing
methods include the user’s hand. The transformation between the
sensor frame and the hand frame sensorThand is calculated by us-
ing an angle-axis rotation. An illustration of the hand coordinate
frame for Elbow-Hand method and corresponding angles are shown
graphically in Figure 2.

Figure 2: Vertical (ψ) and horizontal (θ) angles in spherical co-
ordinates are illustrated. A potential intended target is shown
as a star. The z-axis of the hand coordinate frame is defined by
either the Elbow-Hand (this example) or Head-Hand ray.

Given this coordinate frame and a potential target point P, we
first transform it to the hand frame by:

handptarget = Thand ∗ ptarget

We calculate the horizontal and vertical angles for a target point
as handptarget = (xtarg, ytarg, ztarg) follows:

[θtarget ψtarget] = [atan2(xtarg, ztarg) atan2(ytarg, ztarg)]

Where atan2(y, x) is a function returns the value of the angle
arctan(y

x
) with the correct sign. This representation allows us to

calculate the angular errors in our error analysis experiments in
Section 7. The angles for each object is then used to find the in-
tended target, as explained in the following section.

5. DETERMINING INTENDED TARGET
We propose a probabilistic approach to determine the referred

target by using statistical data from previous pointing gesture ob-
servations. We observed that head-hand and elbow-hand methods,
implemented using two skeleton trackers, returned different angle
errors in spherical coordinates. Our approach relies on learning
statistics of each of these approaches, and compensating the error
when the target object is searched for. First, given a set of prior
pointing observations, we calculate the mean and variance of the
vertical and horizontal angle errors for each pointing method. This
analysis will be presented in Section 7. Given an input gesture, we
apply correction to the pointing direction and find the Mahalanobis
distance to each object in the scene.

When a pointing gesture is recognized, and the angle pair

[θtarget ψtarget]

is found as described in the previous section, we first apply a cor-
rection by subtracting the mean terms from measured angles:

[θcor ψcor] = [θtarget − µθ ψtarget − µψ]

We also compute a covariance matrix for angle errors in this
spherical coordinate system:

Stype =

[
σθ 0
0 σψ

]
We get the values for µθ, µψ, σθ, σψ from Tables 1 and 2 for

the corresponding gesture type and target. We then compute the
mahalanobis distance to the target by:

Dmah(target,method) =
√

[θcor ψcor]TS
−1
method[θcor ψcor]

We use Dmah to estimate which target or object is intended. We
consider two use cases: the objects are represented as a 3D point or
a point cloud. For point targets, we first filter out targets that have
a Mahalanobis distance larger than a threshold Dmah > Dthresh.
If none of the targets has a Dmah lower than the threshold, then
we say the user did not point to any targets. If there are multiple
targets that has Dmah <= Dthresh , then we determine ambigu-
ity by employing a ratio test. The ratio of the least Dmah and the
second-least Dmah among all targets is compared with a thresh-
old to determine if there is ambiguity. If the ratio is higher than a
threshold, then the robot can ask the person to solve the ambiguity.

If the target objects are represented as point clouds, we then com-
pute the horizontal and vertical angles for every point in the point
cloud and find the minimum mahalanobis distance among all. The
distance to an object is then represented by this minimum value.
Usage of the point cloud instead of the centroid for determining
the intended object has several advantages. First, it yields better
estimations due to the coverage of the full point cloud. Second, it
takes into account the size of the object. For example, if a person is
pointing to a chair or door, it is very unlikely that he/she will target
the centroid of it. If the point cloud is used, then we can easily tell
that the object is targeted.

6. DATA COLLECTION
To evaluate the accuracy of pointing gestures, we created a test

environment with 7 targets placed on planar surfaces in view of a
Kinect sensor (Figure 3). Depth data was collected from six users,
who pointed at each of the seven targets with their right arm while
standing at 2 meters away from the sensor. Targets 1 through 4
were on tables positioned around the user, while targets 5 through
7 were located on a wall to the user’s right. Our use case is on

a mobile robot platform capable of positioning itself relative to the
user. For this reason, we can assume that the user is always centered
in the image, as the robot can easily rotate to face the user and can
position itself at a desired distance from the user.

7

6

3 1

5
4

2

Figure 3: Our study involved 6 users that pointed to 7 targets
while being recorded using 30 frames per target.

6.1 Ground Truth Target Positions
We make use of plane extraction technique in a point cloud to

have an accurate ground truth measurement. First, the two table
and wall planes are extracted from the point cloud data using the
planar segmentation technique described in [29]. We then find the
pixel coordinates of corners on targets in RGB images, using Harris
corner detection [9], which produces calculated corners in image
coordinates with sub-pixel accuracy. The pixel coordinate corre-
sponding to each target defines a ray in 3D space relative to the
Kinect’s RGB camera. These rays are then intersected with the
planes detected from the depth data, yielding the 3D coordinates of
the targets.

6.2 Skeleton Data Capture
In order to be able to do a fair comparison between MS-SDK

and OpenNI skeleton trackers, we used the same dataset for both.
MS-SDK and OpenNI use different device drivers, therefore can
not be directly used on the live depth stream at the same time. Be-
cause of this, we extract the skeleton data offline in multiple stages.
The pipeline for the data capture procedure is illustrated in Figure
4. We first save the depth streams as .xed files using Microsoft
Kinect Studio program. The acquired .xed file is converted to .oni
in a OpenNI recorder application by streaming the depth stream to
through Kinect Studio. The .oni is then played back in skeleton

Kinect

MS Kinect Studio 1.5

.xed

MS Kinect SDK 1.5
Skeleton Tracker

MS-SDK
Skeleton Data

.xed to .oni
converter

.xed

NITE 1.5
Skeleton Tracker

OpenNI NITE
Skeleton Data

Figure 4: Data capturing pipeline for error analysis.

tracking application in OpenNI, which writes the OpenNI skeleton
data to a .txt file. MS-SDK skeleton data is obtained by playing
back the original .xed in the skeleton tracking application.

6.3 Pointing Gesture Annotation
To factor out the effectiveness of our pointing gesture recogni-

tion method described in Section 3.2, we manually labeled when
each pointing gesture began for data collection. Starting from the
onset of the pointing gesture as annotated by the experimenter, the
following 30 sensor frames were used as the pointing gesture. This
corresponds to a recording of 1 second in the Kinect sensor stream.
For each frame, we extracted skeleton data using both the MS-SDK
and the OpenNI.

7. ERROR ANALYSIS
The four rays corresponding to the four different pointing ap-

proaches described in Section 3.1 were used for our error analysis.
As described in Section 6.1, the ground truth target positions are
available. We computed two types of errors for each gesture and
target:

• Euclidean error of ray intersections with target planes (Figure 5)
• Angular error in spherical coordinates (Tables 1,2 and Figure 6)

We elaborate our error analysis subsequent sections:

7.1 Euclidean error
Given a ray ~v in the sensors frame from one of the pointing ges-

ture approaches, and a ground truth target point ptarget lying on
a target planar surface, the ray-plane intersection between ~v and

plane was computed for each ray, resulting in a 3D point lying on
the plane. Figure 5 shows the 2D projections for all 30 measure-
ments from each subject (shown in different colors) and each target.
For ease of display, the 3D intersection coordinates with the target
planes are displayed in a 2D coordinate system attached to the tar-
get plane, with the ground truth target point as the origin.

As can be seen in Figure 5, the pointing gesture intersection
points were fairly consistent across all users, but varied per tar-
get location. The elbow-hand method produced similar results for
MS-SDK and OpenNI. The same is true for the head-hand method.
It is also noteworthy that the data for each target tends to be quite
clustered for all methods, and typically not centered on the target
location.

7.2 Angular Error
We computed the mean and standard deviations of the angular

errors in the spherical coordinate system for each pointing gesture
method and target. Section 4 describes in detail how the angles
(θ, ψ) are found. The mean and standard deviation analyses are
given in Tables 1 and 2. The aggregate errors are also displayed as
a box plot in Figure 6.

Several observations can be made from these results. The data
from the elbow-hand pointing method reports that users typically
point about 11 degrees to the left of the intended target direction,
and about 9 above the target direction. Similarly, the data from the
head-hand pointing method reports that users typically point about
2 degrees to the left of the intended pointing direction, but with a
higher standard deviation than the elbow-hand method. On aver-
age, the vertical angle ψ was about 5 degrees below the intended
direction for the OpenNI tracker and 10 degrees below for the MS-

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

Target 1

M
S−

EL
BO

W
−H

AN
D

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

M
S−

HE
AD

−H
AN

D

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

NI
−E

LB
O

W
−H

AN
D

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

NI
−H

EA
D−

HA
ND

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

Target 2

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

Target 3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

Target 4

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

Target 5

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

Target 6

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

Target 7

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

−0.3−0.2−0.1 0 0.1 0.2 0.3

−0.2
−0.1

0
0.1
0.2
0.3

Figure 5: Euclidean distance error in cartesian coordinates for each method and target. The gesture ray intersection points in
centimeters with the target plane, are shown here for each target (T1-T7) as the columns. Each subject’s points are shown in
separate colors. There are 30 points from each subject, corresponding to the 30 frames recorded for the pointing gesture at each
target. Axes are shown in centimeters. The circle drawn in the center of each plot has the same diameter (13 cm) as the physical
target objects used.

Target 1 Target 2 Target 3 Target 4
θ ψ θ ψ θ ψ θ ψ

µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ
MS-Elbow-Hand -15.7 2.9 5.5 6.1 -4.3 6.6 7.8 3.1 -3.7 2.4 7.4 3.1 -3.6 1.9 11.5 2.9
NI-Elbow-Hand -16.4 2.9 4.3 7.0 -3.8 6.6 11.3 10.9 -4.8 2.6 9.7 3.4 -4.0 4.7 12.4 2.5
MS-Head-Hand 7.7 2.6 -12.0 5.3 10.8 6.4 -9.1 3.2 2.2 2.0 -8.3 3.2 -4.0 1.7 -4.3 3.2
NI-Head-Hand 8.5 2.6 -11.7 6.1 10.2 6.7 -5.7 8.0 2.0 2.3 -2.9 4.7 -3.2 2.5 1.45 4.8

Table 1: µ and σ angular errors in degrees for each of Targets 1-4 (Figure 3), for each pointing method.

Target 5 Target 6 Target 7 ALL TARGETS
θ ψ θ ψ θ ψ θ ψ

µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ
MS-Elbow-Hand -14.5 4.1 11.6 3.7 -16.6 3.3 9.9 3.7 -20.8 3.7 5.7 3.4 -11.3 7.7 8.5 4.5
NI-Elbow-Hand -12.9 4.2 9.7 5.1 -16.2 2.6 11.7 3.7 -20.2 4.5 8.1 -3.0 -11.2 7.6 9.6 6.3
MS-Head-Hand -9.4 1.9 -11.6 3.0 -7.1 4.7 -13.8 1.8 -8.0 5.5 -15.6 -2.9 -1.1 8.5 -10.7 4.8
NI-Head-Hand -11.5 1.5 -4.7 4.8 -11.2 4.8 -4.9 2.9 -12.3 5.2 -8.9 -2.5 -2.4 9.6 -5.3 6.4

Table 2: µ and σ of angular error in degrees for Targets 5-7 (Figure 3), for each pointing method. The aggregate µ and σ is also
shown.

Figure 6: Box plots of the errors in spherical coordinates θ and ψ for each pointing method.

SDK tracker, with a higher standard deviation than the elbow-hand
methods. The disparity between the two skeleton trackers for this
pointing method is because they report different points for the head
position, with the MS-SDK head position typically being reported
higher than the OpenNI head position. The overall performance of
the OpenNI and MS-SDK skeleton trackers, however, is fairly sim-
ilar, with the MS-SDK having slightly less variation for our dataset.

As can be seen in the aggregate box plot in Figure 6, the horizon-
tal angle θ has a higher variation than the vertical angle ψ. Exam-
ining the errors for individual target locations shows that this error
changes significantly with the target location. As future work, it
would be interesting to collect data for a higher density of target lo-
cations to attempt to parameterize any angular correction that might
be applied.

8. EVALUATION
Using the error analysis and pointing gesture model we presented

in previous sections, we conducted an experiment to determine how
our approach distinguished two potentially ambiguous pointing tar-
get objects. We use the results of the angular error analysis results
and not the euclidean error analysis for the remainder of the paper
because of our angular representation of pointing gestures.

8.1 Object Separation Test
The setup consisted of a table between the robot and the person

and two coke cans on the table (Figure 8) where the separation be-
tween objects was varied. To detect the table plane and segment
out the objects on top of it, we used the segmentation approach
presented in [29]. The objects centroid positions, along with their
point clouds were calculated in real-time using our segmentation

Figure 8: Example scenarios from the object separation test
is shown. Our experiments covered separations between 2cm
(left images) and 30cm (right images). The object is comfort-
ably distinguished for the 30cm case, whereas the intended tar-
get is ambiguous when the targets are 2cm apart. Second row
shows the point cloud from Kinect’s view. Green lines show the
Elbow-Hand and Head-Hand directions whereas green circles
show the objects that are within the threshold Dmah < 2.

algorithm. The separation between objects were varied with 1 cm
increments from 2-15 cm and with 5 cm increments between 15-
30 cm. We could not conduct the experiment below 2 cm separa-
tion because of the limitations of our perception system. We used
the OpenNI skeleton tracker because rest of our system is based in
Linux, and we already found that performance difference with MS-

SDK for pointing angle errors is insignificant. The experiment was
conducted with one user, who was not in the training dataset. For
each separation, the user performed 5 pointing gestures to the ob-
ject on the right and 5 to the object on the left. The person pointed
to one of the objects and the Mahalanobis distance Dmah to the in-
tended object and the other object is calculated using the approach
in Section 5. We used the mean and standard deviation values of
Target 2 (Figure 3) for this experiment because the objects were
located between the robot and the person.

8.2 Results and Discussion
The results of the object separation experiment is given for Elbow-

Hand (Figure 7(a)) and Head-Hand (Figure 7(b)) methods. The
graphs plot object separation versus the Mahalanobis distance for
the pointed object and the other object for corrected and uncor-
rected pointing direction. There are several observations we make
by looking at these results.

First, the Mahalanobis distance Dmah for the intended object
was always lower than the other object. The corrected Dmah for
both Elbow-Hand and Head-Hand methods for the intended object
was always below 2, therefore selecting the threshold Dthres = 2
is a reasonable choice. We notice that some distances for the unin-
tended object at 2cm separation is also below Dmah < 2. There-
fore, when the objects are 2 cm apart, then the pointing target be-
comes ambiguous for this setup. For separations of 3cm or more,
Dmah of the unintended object is always over the threshold, there-
fore there is no ambiguity.

Second, correction significantly improved Head-Hand accuracy
at all separations, slightly improved Elbow-Hand between 2-12cm
but slightly worsened Elbow-Hand after 12cm. We attribute this to
the fact that the angles we receive is heavily user-dependent and can
have a significant variance across methods as showed in Figure 6.
Moreover, the user was not in the training set.

Third, the Mahalanobis distance stayed generally constant for
the intended object, which was expected. It linearly increased with
separation distance for the other object.

Fourth, patterns for both methods are fairly similar to each other,
other than Head-Hand uncorrected distances being higher than Elbow-
Hand.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14
Elbow−Hand

Object Seperation (cm)

M
ah

al
an

ob
is

 D
is

ta
nc

e
to

 O
bj

ec
t

Intended Object, Uncorrected
Other Object, Uncorrected
Intended Object, Corrected
Other Object, Corrected

(a)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14
Head−Hand

Object Seperation (cm)

M
ah

al
an

ob
is

 D
is

ta
nc

e
to

 O
bj

ec
t

Intended Object, Uncorrected
Other Object, Uncorrected
Intended Object, Corrected
Other Object, Corrected

(b)

Figure 7: Resulting Mahalanabis distances of pointing targets from the Object Separation Test is shown for a) Elbow-Hand and
b) Head-Hand pointing methods. Intended object are shown in green and other object is in red. Solid lines show distances after
correction is applied. Less Mahalanobis distance for intended object is better for reducing ambiguity.

9. CONCLUSIONS
Humans and robots engaged in joint actions that involve objects

will need to be able to communicate about these objects. Deic-
tic gestures can play a crucial part such communication, especially
when establishing goals and negotiating responsibilities. A point-
ing target detection approach that returns a single hypothesis can
lead to failures due to perception error. On the other hand, esti-
mation of a pointing likelihood of nearby objects can give valuable
insight to a robot. For example, a robot can ask the user to disam-
biguate the objects if it perceives more than one object that has a
significant likelihood of being referred to.

In this work, we model the uncertainty of pointing gestures in a
spherical coordinate system, use this model to determine the cor-
rect pointing target, and detect when there is ambiguity. Two point-
ing methods are evaluated using two skeleton tracking algorithms:
Elbow-Hand and Head-Hand rays, using both OpenNI NITE and
Microsoft Kinect SDK. A data collection with 6 users and 7 point-
ing targets was performed, and the data was used to model users
pointing behavior. The resulting model was evaluated for its abil-
ity to distinguish between potential pointing targets, and to detect
when the target is ambiguous. Our evaluation showed that in a sce-
nario where the separation between two objects were varied, our
system was able to identify that there is ambiguity for 2 cm separa-
tion and comfortably distinguished the intended object for 3 cm or
more separation.

Acknowledgement
This work was made possible through financial support from the
BMW corporation and the Boeing corporation.

References
[1] A. Aly and A. Tapus. An integrated model of speech to arm

gestures mapping in human-robot interaction. In Information
Control Problems in Manufacturing, volume 14, pages 817–
822, 2012.

[2] M. Bennewitz, T. Axenbeck, S. Behnke, and W. Burgard.
Robust recognition of complex gestures for natural human-
robot interaction. In Proc. of the Workshop on Interactive
Robot Learning at Robotics: Science and Systems Conference
(RSS), 2008.

[3] N. Blodow, Z.-C. Marton, D. Pangercic, T. Rühr, M. Tenorth,
and M. Beetz. Inferring generalized pick-and-place tasks
from pointing gestures. In IEEE International Conference on
Robotics and Automation (ICRA), Workshop on Semantic Per-
ception, Mapping and Exploration, 2011.

[4] A. G. Brooks and C. Breazeal. Working with robots and ob-
jects: Revisiting deictic reference for achieving spatial com-
mon ground. In Proceedings of the 1st ACM SIGCHI/SIGART
conference on Human-robot interaction, pages 297–304.
ACM, 2006.

[5] K. Cheng and M. Takatsuka. Hand pointing accuracy
for vision-based interactive systems. In Human-Computer
Interaction–INTERACT 2009, pages 13–16. Springer, 2009.

[6] R. Cipolla and N. J. Hollinghurst. Human-robot interface by
pointing with uncalibrated stereo vision. Image and Vision
Computing, 14(3):171–178, 1996.

[7] D. Droeschel, J. Stuckler, and S. Behnke. Learning to in-
terpret pointing gestures with a time-of-flight camera. In

Human-Robot Interaction (HRI), 2011 6th ACM/IEEE Inter-
national Conference on, pages 481–488. IEEE, 2011.

[8] D. Droeschel, J. Stuckler, D. Holz, and S. Behnke. Towards
joint attention for a domestic service robot-person aware-
ness and gesture recognition using time-of-flight cameras. In
Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 1205–1210. IEEE, 2011.

[9] C. Harris and M. Stephens. A combined corner and edge
detector. In Alvey vision conference, volume 15, page 50.
Manchester, UK, 1988.

[10] Y. Hato, S. Satake, T. Kanda, M. Imai, and N. Hagita.
Pointing to space: modeling of deictic interaction referring
to regions. In Proceedings of the 5th ACM/IEEE interna-
tional conference on Human-robot interaction, pages 301–
308. IEEE Press, 2010.

[11] E. Hosoya, H. Sato, M. Kitabata, I. Harada, H. Nojima, and
A. Onozawa. Arm-pointer: 3d pointing interface for real-
world interaction. In Computer Vision in Human-Computer
Interaction, pages 72–82. Springer, 2004.

[12] K. Hu, S. Canavan, and L. Yin. Hand pointing estimation for
human computer interaction based on two orthogonal-views.
In Pattern Recognition (ICPR), 2010 20th International Con-
ference on, pages 3760–3763. IEEE, 2010.

[13] N. Jojic, B. Brumitt, B. Meyers, S. Harris, and T. Huang.
Detection and estimation of pointing gestures in dense dis-
parity maps. In Automatic Face and Gesture Recognition,
2000. Proceedings. Fourth IEEE International Conference
on, pages 468–475. IEEE, 2000.

[14] R. E. Kahn and M. J. Swain. Understanding people pointing:
The perseus system. In Computer Vision, 1995. Proceedings.,
International Symposium on, pages 569–574. IEEE, 1995.

[15] R. Kehl and L. Van Gool. Real-time pointing gesture recog-
nition for an immersive environment. In Automatic Face and
Gesture Recognition, 2004. Proceedings. Sixth IEEE Interna-
tional Conference on, pages 577–582. IEEE, 2004.

[16] C. C. Kemp, C. D. Anderson, H. Nguyen, A. J. Trevor, and
Z. Xu. A point-and-click interface for the real world: laser
designation of objects for mobile manipulation. In Human-
Robot Interaction (HRI), 2008 3rd ACM/IEEE International
Conference on, pages 241–248. IEEE, 2008.

[17] G. Kowadlo, P. Ye, and I. Zukerman. Influence of gestural
salience on the interpretation of spoken requests. In INTER-
SPEECH, pages 2034–2037, 2010.

[18] Z. Li, N. Hofemann, J. Fritsch, and G. Sagerer. Hierarchical
modeling and recognition of manipulative gesture. In Proc.
of the Workshop on Modeling People and Human Interaction
at the IEEE Int. Conf. on Computer Vision, volume 77, 2005.

[19] C. Martin, F.-F. Steege, and H.-M. Gross. Estimation of
pointing poses for visually instructing mobile robots under
real world conditions. Robotics and Autonomous Systems,
58(2):174–185, 2010.

[20] P. Matikainen, P. Pillai, L. Mummert, R. Sukthankar, and
M. Hebert. Prop-free pointing detection in dynamic cluttered
environments. In Automatic Face & Gesture Recognition and
Workshops (FG 2011), 2011 IEEE International Conference
on, pages 374–381. IEEE, 2011.

[21] C. Matuszek, L. Bo, L. Zettlemoyer, and D. Fox. Learning
from unscripted deictic gesture and language for human-robot
interactions. 2014.

[22] K. Nickel and R. Stiefelhagen. Pointing gesture recognition
based on 3d-tracking of face, hands and head orientation.
In Proceedings of the 5th international conference on Mul-
timodal interfaces, pages 140–146. ACM, 2003.

[23] C. P. Quintero, R. T. Fomena, A. Shademan, N. Wolleb,
T. Dick, and M. Jagersand. Sepo: Selecting by pointing as an
intuitive human-robot command interface. In IEEE Int. Con-
ference of Robotics and Automation, Karslruhe, Germany,
2013.

[24] S. S. Raza Abidi, M. Williams, and B. Johnston. Human
pointing as a robot directive. In Proceedings of the 8th
ACM/IEEE international conference on Human-robot inter-
action, pages 67–68. IEEE Press, 2013.

[25] J. Schmidt, N. Hofemann, A. Haasch, J. Fritsch, and
G. Sagerer. Interacting with a mobile robot: Evaluating gestu-
ral object references. In Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International Conference on, pages
3804–3809. IEEE, 2008.

[26] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from single depth images. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, pages 1297–1304. IEEE, 2011.

[27] A. J. Trevor, J. G. Rogers III, A. Cosgun, and H. I. Chris-
tensen. Interactive object modeling & labeling for ser-
vice robots. In Proceedings of the 8th ACM/IEEE interna-
tional conference on Human-robot interaction, pages 421–
422. IEEE Press, 2013.

[28] A. J. B. Trevor, A. Cosgun, J. Kumar, and H. I. Christensen.
Interactive map labeling for service robots. In IROS 2012
Workshop on Active Semantic Perception, 2012.

[29] A. J. B. Trevor, S. Gedikli, R. Rusu, and H. I. Christensen.
Efficient organized point cloud segmentation with connected
components. In ICRA Workshop on Semantic Perception
Mapping and Exploration, 2013.

[30] A. D. Wilson and A. F. Bobick. Parametric hidden markov
models for gesture recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 21(9):884–900, 1999.

[31] I. Zukerman, G. Kowadlo, and P. Ye. Interpreting pointing
gestures and spoken requests: a probabilistic, salience-based
approach. In Proceedings of the 23rd International Confer-
ence on Computational Linguistics: Posters, pages 1558–
1566. Association for Computational Linguistics, 2010.

[32] I. Zukerman, A. Mani, Z. Li, and R. Jarvi. Speaking and
pointing?from simulations to the laborator. Knowledge and
Reasoning in Practical Dialogue Systems, page 58, 2011.

	Introduction
	Related Work
	Pointing Gesture Recognition
	Types of Pointing Gestures
	Pointing Gesture Recognition

	Representing Pointing Directions
	Determining Intended Target
	Data Collection
	Ground Truth Target Positions
	Skeleton Data Capture
	Pointing Gesture Annotation

	Error Analysis
	Euclidean error
	Angular Error

	Evaluation
	Object Separation Test
	Results and Discussion

	Conclusions

