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ABSTRACT 
Joint action between humans and robots can be improved either 
by transferring more and more human skills into the robot, 
decreasing the difference between these unequal partners, or by 
designing human-robot interactions in such a way that people can 
adjust to these collaborations, making use of their natural 
tendency to orient at the ease of collaborative effort, i.e. taking 
over those tasks that are very difficult for robots but easy for 
humans.  In this paper, we explore what conditions need to be 
satisfied so that humans make use of their intuitive capabilities in 
human-robot interaction. The case studies presented concern robot 
learning from demonstration and illustrate a) that users have 
intuitive knowledge and possibly even methods that they bring to 
bear seamlessly and b) that probing into such intuitive knowledge 
can be difficult if people do not understand that their behavior 
matters.  
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1. INTRODUCTION 
Joint action does not necessarily mean that all collaborators have 
the same capabilities and carry out the same tasks; humans and 
robots have, for instance, very different strengths and weaknesses.  

One possibility to improve human and robot joint action is to 
provide robots with more and more human capabilities in order to 
bridge the gap between the unequal partners. Previous work 
shows that providing robots with human capabilities, such as pro-
active multi-state perspective taking (Pandey et al. 2013) or 
contingent response (e.g. Fischer et al. 2013), indeed makes 
interactions increasingly smooth and natural. 

Another possibility to bridge the gap in asymmetric interactions 
such as between humans and robots is to make use of a natural 
human capability, namely to attend to ease of collaborative effort. 
That is, when people are collaborating with each other, they 
seamlessly take over certain tasks if they are difficult for the 
communication partner. For instance, in a series of experiments, 
Schober (1998, 2009) shows that people take their partners’ 
perspective, even though this means more cognitive effort for 
them, if they notice that their partners have more problems than 
they are having themselves. Furthermore, in speech to infants and 
young children, caregivers take over almost all interactional work 
(Filipi 2009). Clark & Wilkes-Gibbs (1986) therefore introduce 
the principle of ease of collaborative effort to account for the 
finding that people generally orient less at minimizing their own 
effort but instead rather strive to minimize the joint effort.  

In our first case study, users subconsciously produce clues to a 
distinction that is easy for humans and difficult for robots, namely 
whether the user is demonstrating an action for the robot or is 
working on his or her own, solitary task. Since the robot is meant 
to learn to collaborate from the observation of the human, 
knowing whether it currently needs to observe the human action 
or not is crucial, and thus such clues can be very helpful. 
However, as our second case study shows, getting people to 
employ their intuitive knowledge may not be trivial at all. If 
people are not aware that there is a problem for the robot or when 
they don’t understand that their behavior matters, interfaces for 
the human-robot collaboration need to be designed that allow 
people to make use of their intuitive knowledge in ways that the 
robot can process.  

The case studies we present here both concern learning from 
demonstration, also known as programming by demonstration 
(e.g. Billard et al. 2008; Dillmann et al. 1995). 

2. STUDY I: INTUITIVE DISPLAYS 
In this study (cf. also Kirstein et al. 2015), we describe a situation 
in which human users switch between collaborative work and 
solitary tasks. Only the former involve human-robot interaction 
and, in this case, also robot learning from demonstration. In order 
to collaborate effectively, it is crucial that the robot distinguishes 
between these two types of phases in the workflow. What we have 
found was that users intuitively employ cues to the status of their 
current actions. For the robot, making such a distinction would be 
very difficult. However, naïve users seamlessly take over this 
collaborative work by using a reliable to cue to the collaborative 
phases: they smile. Thus, this study is an example for successful 
joint action where human users orient at ease of collaborative 
effort and simply take over the task. 

The data were elicited on a collaborative assembly task during 
which naïve human users were asked to instruct a robot to hand 
over the appropriate parts for the assembly of a wooden toolbox, 
which the user then had to assemble him- or herself. The 
experiments were carried out using the Third-Hand-Platform at 
the Institute of Computer Science at the University of Innsbruck 
within the frame of the 3rd Hand Project (Lioutikov et al 2014). 

The robotic platform used comprises a Kuka robot arm equipped 
with a Schunk hand and a head with two inbuilt cameras and one 
Kinect camera on top. Other cameras were placed around the 
robot’s workspace to record the sessions for later analysis and for 
the wizard to control the robot. The workspace of the robot is a 
table in front of the robot with a foam layer on top. For this 
experiment, the six pieces of the wooden box were placed on the 
table in a holding system so that the robot could easily grasp 
them. The participants stood at the other side of the table, opposite 



the robot and were equipped with the tools (drill, screws and 
instruction manual) to assemble the box. Behind the participants, 
an engineer ensured everyone’s safety. Another engineer, not 
visible to the participants, controlled the robot from behind a 
screen. 

30 participants (aged 18-38) were included in the analysis, 8 
female and 22 male. Participants were recruited by word-of-
mouth and rewarded with a bar of chocolate for their time.  

The task was to guide the robot to assist them in assembling a 
wooden toolbox. All participants received the same introduction 
and had to find out themselves how they could instruct the robot 
to fetch the parts. After introducing the participants to the task, the 
facilitators did not intervene except when assisting users with the 
drill. The robot reacted based on the users’ gestures (not, for 
instance, their speech). The participants’ interactions with the 
robot were video recorded. After participants completed the task, 
they filled out a questionnaire about their interaction with the 
robot.  

 

We noticed that participants smiled whenever they turned to the 
robot. We thus analyzed the recorded sessions systematically 
concerning the participants’ smiling behavior when they 
interacted with the robot compared to when they assembled the 
wooden box themselves. Interactions of the participants with the 
facilitators were disregarded from the analysis. For every 
situation, the number and length of participants’ smiles was 
counted. The participants’ interaction with the robot was further 
divided into two kinds of situations: situations in which 
participants instructed the robot to fetch the parts and situations in 
which the robot handed the parts over to the participants. Since 
the assembly involved six parts, there are six instruction and six 
handover situations per participant. The participants’ behavior 
before and after they smiled was analyzed to determine the 
contexts in which smiling occurred.  

The analyses reveal that participants smile significantly more 
when interacting with the robot than when assembling the 
toolbox. All in all, participants smiled around five times more 
when interacting with the robot (236 times) than when assembling 
the wooden box (42 times). The quantitative analysis shows that 
in both phases in which participants interact with the robot, 
instructing and handovers, participants smile more often and for a 
longer time than during assembly. T-testing reveals that the 
solitary assembly phases differ significantly from both other 
conditions such that people smile more when interacting with the 
robot (for details, see Kirstein et al. 2015). 

To sum up, in this study, people had intuitive knowledge about 
the status of the interaction that was not readily available to the 
robot. However, people systematically employ social signals to 
mark off the two different phases, providing the robot with 
reliable cues to the current interactional status. 

3. STUDY II: DESIGNING FOR 
COLLABORATION 
In our second study (Fischer et al. in preparation), people are also 
taken to possess intuitive knowledge, but here they do not make it 
available easily to the robot. The problem addressed here is the 
choice of the robot control point during programming by 
demonstration. A very efficient way to demonstrate actions to a 
robot is teleoperation (Chernova and Thomaz 2014; Campbell et 
al. 1996; Dillmann et al. 1995). Teleoperation is a “demonstration 
technique in which the teacher operates the robot learner 
platform and the robot’s sensors record the execution” (Argall et 
al. 2009: 473). When actions are demonstrated to a robot by 
means of teleoperation, the robot is controlled by means of a 
reference point that is coordinated with the teleoperation device. 
Usually this point is the tool center point (TCP). All joints are 
operated in relation to that control point. During programming by 
demonstration, the robot control point is furthermore the relevant, 
since most informative, point the system records and learns from. 
The problem now concerns the fact that a fixed robot control point 
such as the TCP may not always be the most informative point, 
nor the best point for robot control. For instance, depending on 
whether the robot is moving only itself or itself and an object, the 
most informative control point will differ. While in the first case 
the control point of an industrial robot arm, for instance, is in the 
robot's 'hand', the control point should be somewhere in the object 
when the robot is carrying a somewhat lengthy object, such as a 
peg from the Cranfield benchmark set for peg-in-hole tasks 
(Collins et al. 1984).  

In order to decide automatically on the appropriate control point, 
the robot would need to know whether it is holding an object or 
not, what the exact dimensions of the object are, how it is holding 
the object and what the current activity is – especially whether a 
particular part of the object is in focus, such as the lower part of a 
peg that is being inserted into a hole, or whether the robot is 
moving the whole object from one place to another. 

Such decisions require considerable reasoning capabilities, which 
common industrial robot arms are not equipped with. In contrast, 
our hypothesis is that humans find this decision very easy to 
make, and that taking over this task in the interest of easing the 
collaborative effort would come with no particular costs for the 
human, yet greatly improves the interaction if the human user 
understands how he or she can contribute to the collaborative 
effort. We thus hypothesized that if users have the choice, they 
will intuitively inform the robot correctly about what control point 
to choose. The challenge then consists in providing users with the 
opportunity to make use of their intuitive knowledge.  

The robot used for this study is the MARVIN (Multi Armed 
Robotic and Vision Intelligence) platform (Savarimuthu et al. 
2013), located in a laboratory at the University of Southern 
Denmark. The platform comprises two Universal Robot UR5 
arms with 6 DoFs, of which only one was used in the current 
experiments. Each arm is equipped with a three-finger gripper 
SDH-2. A numpad allows users to select a grasp mode for the 
robot gripper. A 6-axis force-torque sensor is mounted between 
the robot hand and the gripper. 

Figure 1. The experimental set-up 
 



 

Figure 2: The Marvin platform 

The experiments were recorded with two video cameras directed 
at both robot and human user, both of which were external to the 
platform. The participants in this experiment were recruited by 
word-of-mouth and ads in the cafeteria of our university. 

3.1 Prestudy 
We first carried out a study using the common data glove for 
teleoperating the robot (see Figure 2). In this pre-study, 16 
participants aged 19-36, one of whom is female (average age 
25.3), carried out a typical peg-in-hole task using a benchmark 
setting, the Cranfield set (Collins et al. 1984). Since we wanted to 
keep the tasks short in order to avoid both fatigue and a learning 
effect, users received only four pieces of the Cranfield set: a 
faceplate, a square peg, a round peg and a separator (see Figure 
2). Their task was to insert the two pegs into the faceplate and to 
place the separator on top. On a scale from 1 to 4, participants 
selfreport a mean experience of 2.4 with robots and 2.8 
concerning how often they play video games. 

Participants using the glove need 4:49-10:53 minutes of actual 
moving time of the robot to complete the task, with an average of 
188.24 seconds per peg (sd 121.45). Within the time frame of the 
20 minutes given, only 10 of the 16 participants finish the task. 
Three only succeed to insert the two pegs, two manage to insert 
only one peg, and one participant does not even succeed with a 
single peg.  

We asked most participants which part of the robot they believed 
they were controlling, and it turned out that they did not have a 
realistic idea of the parts they were controlling (see Figure 3). 
However, many of the participants in fact wished for different 
control points.  

 
Figure 3: What participants thought they controlled and what 
they would have liked to control in the Data Glove Condition 
 

These results show that people did not develop an accurate 
understanding of how the robot really works (the robot actually 
uses the tool center point above the gripper as the control point). 
They did however bring in an accurate view of what would be 
necessary, namely at least two different control points – as is also 
apparent from the fact that participants who use kinesthetic 
guidance, i.e. who manipulate the robot arm directly, would never 
use only a single control point but would move their hands to 
different places on the robot to control it. Thus, the problem, that 
during teleoperation there is usually only one robot control point, 
which is located in the tool center, did not become clear to the 
users. 

To provide users with the possibility to switch between control 
points when they deemed necessary, we set out to develop a novel 
interface that allows users to do exactly what they wished to do, 
namely to switch between robot control points, to match their 
intuitions about which part to control. 

3.2 Device Design 
In order to make use of users’ intuitive knowledge, we developed 
a novel teleoperation device that is designed to suggest different 
holds and thereby communicate to the robot which control point 
to choose. By intuitively choosing an appropriate hold for a given 
task, users are expected to choose intuitively the right control 
point as well.  

 



 
 

Figures 4ab: The novel device 

For the novel device (see Figures 4ab), we integrated two buttons 
that communicate two different control points to the robot. The 
two buttons correspond to two different reference points in the 
robot (see Figure 5). The device was shaped to invite two different 
ways of holding the device, which in turn invite two different 
kinds of activities:  

a) moving the robot arm in large movements in a hold that 
resembles the shape of the robot arm (and of the way 
the data glove is held) 

b) operating the robot to carry out finetuning, for instance, 
when positioning the respective object correctly in a 
hole. This hold resembles holding a pen (pens are held 
in this way to allow us to make fine movements with 
them).  

Thus, the two holds are taken to be iconic of the kinds of activities 
to be carried out and thus to suggest implicitly which button to 
press (and correspondingly which control point to choose).  

 

Figure 5: The two buttons on the novel teleoperation device 
correspond to two different robot control points 
 

3.3 Pilot Study 
The pilot study during which participants use the new 
teleoperation device comprises 16 participants aged 22-59 years, 
four of whom are female (average age 33.5). They selfreport an 

average experience with robots of 1.9 and 1.8 concerning the 
frequency with which they play video games. 

Like in the pre-study, users were greeted, asked to fill out a 
consent form and shown an instruction video created just for this 
experiment, in which the task, the robot, and the handling of the 
respective teleoperation device and the numpad were explained.  

In the video, concerning the new device, the two intended ways of 
holding the device were briefly demonstrated without further 
explanation. Then, users were brought into the lab space and 
introduced to the robot.  

The videos were analyzed for efficiency, success and error rate for 
each participant in the two conditions. Efficiency was measured 
by calculating the time the robot was being moved, the success 
rate was determined by analyzing how many pegs and separators 
were correctly positioned within the 20-minute timeframe 
provided. 

Regarding efficiency, it turns out that 15 of 16 participants 
complete the task, and the one participant who does not complete 
the whole task at least manages to insert both pegs. The range of 
time needed is 4:06 to 11:04 minutes, with an average of 142.22 
seconds per peg (sd 82.25). Participants thus did not perform 
significantly faster than in the pre-study using the data glove, yet 
they were more successful. 

However, it turned out that only 13% of the users made use of 
both control points, and that the other users rather chose one way 
to hold the device and then did not change any more during the 
experiments. Thus, even though teleoperation by means of the 
new device produced higher success rates, participants in fact did 
not make the use of the two buttons that correspond to the 
different reference points. Figure 6 shows that only 13% of the 
participants used both buttons and thus switched between 
reference points. Most of the other participants decided for 
reference point 1 (the grasp for large movements). 

 
Figure 6: Percentage of participants using the upper button 
(RP1), the lower button (RP2) or both 
Furthermore, when asked which point they believed they were 
controlling, participants responded in very similar ways as they 
did in the condition with the data glove as teleoperation device 
(see Figure 7). 

Like when using the data glove, participants wished to be able to 
switch control points; however, they did not understand that the 
new device allowed them to do this. When analyzing the reasons 
for the failure of our device, we reviewed the introduction video, 
and we realized that when we introduced the two buttons that 
indicated the different control points to the robot, we had used the 

62%	  

25%	  

13%	  

RP1	   RP2	   Both	  



formulation ‘you can operate the robot like this or you can operate 
it like that’; i.e. we had unintentionally presented the two ways of 
holding the device as equal alternatives. We therefore implicitly 
signaled to our participants that their choice of button did not 
matter and had no relevance. That users did not understand that 
the way they held the device had any impact is indicated by 
Figure 8, which shows some snapshots of ways in which 
participants held the device. Consequently, the introductory video 
may have been more misleading than helpful, and so we carried 
out a second set of experiments in which we presented users with 
a new introduction video that made the significance of the two 
buttons clear. 

 

 

Figure 7: What participants thought they were controlling 
and what they would have liked to control in the New Device 
Condition 
The results of this pilot clearly show that just providing users with 
the possibility to switch control points was not sufficient to make 
them use their intuitive knowledge for the robot. This may be due 
to lack of willingness to do so, or simply with the fact that they 
did not know that it was important – which made them foreground 
other considerations (such as level of comfort). In order to 
distinguish whether users’ limit of orientation of ease of 
collaborative effort was reached and they simply did not care 
about whether the robot understood the correct control point or 
whether they did not understand from the introductory video that 
their choice mattered, we carried out another, final study. 

3.4 Final Study 
This study replicates the previous experiments, just with a new 
introductory video. This video introduced the function of the two 
buttons. We compare here the effects of using the data glove and 
the new device directly. 

30 participants took part in this study, 15 in each condition. In 
condition 1, the data glove condition, there were 5 women and 10 
men between 21 and 57 years of age (average age 27.9). On a 
scale from 1 to 4, participants selfreport an average experience 
with robots of 2.3 and with computer games 2.2. In condition 2, 
the condition in which participants used the new device, there 
were 2 women and 13 men between 18 and 39 years of age 
(average age 24.1). Participants selfreport an average experience 
with robots of 1.9 and with computer games 2.9. 

The analysis of the data shows that this time participants had 
understood the use of the two buttons and used the device in the 
way expected. Of 90 large movements that participants carried out 
in Condition 2 with the new device, all were done using reference 
point 1. Likewise, 74 times users employed the lower button to 
carry out fine movements. Thus, all participants switched between 
the buttons, which suggests that the video instruction was 
successful in this study. 

The analysis of the quantitative data shows that demonstrations by 
means of the data glove take significantly longer, both in terms of 
the time in which the robot was moved and the total 
demonstration time, for the round peg and the separator than the 
demonstrations by means of the new device. Results are near 
significant for the square peg. Thus, using the novel device in the 
intended ways indeed contributed to the efficiency of the 
demonstrations. Consequently, when participants understand that 
they can choose the robot control point themselves, they all take 
the opportunity to do so. In this study, the video tutorial was 
sufficiently clear about the function of the novel device, and all 
users made use of both buttons. However, the different steps we 
present here indicate how difficult it was to make use of users’ 
intuitions about the use of the device. Nevertheless, as soon as 
people understand that there is a problem, they all take over the 
extra interactional effort to improve the joint action. 

4. CONCLUSION  
We have presented two examples of human-robot joint action, in 
which users possess intuitive knowledge that can improve the 
collaboration, and like in asymmetric interactions among humans, 
users did take over extra interactional work in order to make the 
interaction more successful. However, the two case studies differ 
considerably: Whereas in the first study, users subconsciously 
produced concomitant signals to the robot as a byproduct of their 
understandings of the status of the current activity, in the second 
study, people possessed the same kind of knowledge about the 
type of activity at stake, namely large movement versus 
finetuning, yet since participants did not understand how the robot 
was controlled, they did not understand that there was a problem 
and hence that their choices mattered. Thus, users’ understandings 
of the world, while useful as a resource for the joint collaboration, 
as the two studies show, can also prevent users’ from making the 
right choices; in study II, since people did not understand the use 
of the handholds demonstrated to them and the problem that they 
were designed to solve, they rather went with their own 
explanations and motivations and ignored the recommendations 
given in the video in the pilot study. Thus, probing users’ intuitive 
knowledge sometimes has to address such knowledge explicitly in 

Figure 8: Different ways of holding the device in the pilot study 



order for participants to make use of it in a given collaboration. 
However, on the whole, users proved more than willing to take 
over extra tasks for the sake of ease of collaborative effort. 

5. DESIGN IMPLICATIONS 
The current discussion has shown that one way to improve 
human-robot joint action, also of the kind which serves as a 
common starting point for the current workshop, is to guide users 
into making use of their enormous experience in social 
cooperation and into taking over those activities that are 
particularly hard for robots to achieve. As we have seen, 
identifying possible contributions by humans can be achieved by 
observing closely what people do anyway, but it may also require 
sophisticated interface design to make use of human intuitive 
knowledge. A crucial step in the employment of such knowledge 
turned out to be the communication of the problems robots face as 
well as their exact functioning; consequently, much work in the 
design of joint action should go into the communication of the 
respective robot’s affordances, especially its strengths and 
weaknesses, mechanisms and functionalities. 
Another design implication of the current finding, that users 
attend to ease of collaborative effort also in human-robot 
interactions, is that not only are people willing to take over extra 
efforts to make the collaboration successful, but they may also 
expect robots to step back where their performance is far below 
the level of the human user. That is, the principle of ease of 
collaborative effort demands that the interaction partners 
collaborate on making the joint action most effective – which 
suggests that there may be problems if robots try to solve tasks 
that humans are particularly good at. Thus, it may make sense to 
determine beforehand what aspects of a joint action humans 
would prefer the robot to take over. 
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